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ABSTRACT 

The mathematical  description of acoustic  wave  propagation  within a time- and  space-varying,  and 
moving, linear viscous fluid is formulated as a system of coupled  linear  equations. This system is 
rigorously  developed  from  fundamental  principles of continuum  mechanics  (conservation of mass, 
balance  of  linear  and  angular  momentum, balance of entropy) and various constitutive relations  (for 
stress,  entropy  production,  and  entropy conduction) by linearizing all expressions with  respect to the 
small-amplitude acoustic wavefield  variables. A significant simplification  arises if the fluid medium is 
neither viscous nor heat conducting (i.e.,  an  ideal fluid). In this case the mathematical  system  can  be 
reduced to a set  of five, coupled, first-order partial differential equations. Coefficients in the systems 
depend on various  mechanical  and  thermodynamic properties of the ambient  medium that supports 
acoustic  wave  propagation.  These  material properties cannot all be arbitrarily  specified,  but  must  satisfy 
another  system of nonlinear expressions characterizing the dynamic  behavior of the background  medium. 
Dramatic simplifications in  both  systems occur if the ambient  medium is simultaneously  adiabatic  and 
stationary. 
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1.0 INTRODUCTION 

Accurate simulation of sound  wave  propagation  within  a  three-dimensional  environment that is spatially 
heterogeneous,  time-varying, andor moving  has  important scientific, military, and commercial 
applications. In this study, the fundamental mathematical equations governing  acoustic  wave  propagation 
within  such  a  complex  and  dynamic  medium are developed.  The expressions are rigorously  derived  from 
basic principles of continuum mechanics, relevant  constitutive  relations,  and equations of state using  a 
straightforward  linearization process. Standard  textbooks in acoustics  (e.g., Morse and  Ingard,  1968; 
Kinsler et al., 2000) or wave  propagation (e.g., Tolstoy,  1973;  Chew, 1990) do not  treat this topic  with the 
requisite degree of generality. However, a  recent  text by Ostashev  (1997) does provide greater indepth 
analysis. 

Some previous efforts have  been devoted to deriving a  single,  higher-order,  partial differential equation 
containing a single acoustic  wavefield  variable.  For  example,  Pierce  (1990)  obtains  a  second-order  partial 
differential equation for acoustic particle velocity  potential,  and  Ostashev  (1997) develops a  third-order 
equation for acoustic  pressure. In contrast, the goal of the present  mathematical  development is to obtain 
a system of coupled, linear, first-order, partial differential equations amenable to numerical  solution  via 
explicit, timedomain, finite-difference techniques.  Coupled, first-order systems  possess favorable 
characteristics for finite-difference numerical algorithms,  when  compared  with  higher-order equations (or 
higher-order  systems of equations). 

In developing the system  of first-order partial  differential  equations,  an  attempt is made to: 

1) Minimize the number  of dependent variables  (i.e., the acoustic  wavefield  variables). 
2) Minimize the number of ambient  medium  parameters. 
3) Eliminate ambient  medium parameters that are difficult to determine  in  practice. 
4) Incorporate  all  acoustic  wavefield source types. 

If the number of dependent  variables in the system is minimized,  then computational storage is reduced 
and execution  speed is enhanced. Similarly, minimizing the number  of  ambient  medium  parameters 
(appearing in the coefficients of the system) reduces the overall  computational storage demand.  Finally, 
the utility of the equations is enhanced by including a  variety  of  acoustic energy source terms. 

A  particular  objective  of this study entails developing  a  system of equations appropriate for sound  wave 
propagation  in  dynamic  atmospheric  environments.  However, for pedagogical  purposes, the analysis is 
initiated with  a  more  general point of  view  than typically  found in mathematical  treatments of 
atmospheric  acoustics. That is, the ambient medium supporting acoustic  wave  propagation is considered 
to be  both  viscous  and  heat conducting. The derived  wave  propagation equations are  correspondingly 
complicated. Subsequent specialization to (i) an  ideal  and  non-heat-conducting fluid, (ii) an  adiabatic 
ambient medium,  and (iii) divergence-free  ambient  fluid  flow,  yields  a system of equations applicable to 
many  atmospheric  sound  propagation situations. In this context,  all three of the above assumptions are 
considered quite reasonable.  However, the more  general equations may find application to acoustic  wave 
problems  in  viscous  and/or  heat-conducting fluids. 

Indicia1  notation is used  in  the following mathematical  development.  All quantities associated  with the 
ambient  medium  supporting  acoustic  wave  propagation are superscripted  with the symbol “0”. All 
acoustic  wavefield  variables  and sources are prefixed  with the symbol “8”. 
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2.0 DEFINITIONS 

Acoustic  waves are small  propagating fluctuations in  pressure,  mass  density,  entropy,  temperature, 
particle velocity,  and  stress  superimposed  on  larger  and  more  uniform  background  values of these 
quantities.  Let po(r,r), pO(r,r), qo(r,r), and BO(r,r) refer to the (scalar-valued)  pressure,  mass  density, 
specific  entropy  density  (i.e.,  entropy per unit  mass),  and absolute temperature of the  background (or 
ambient, or reference)  medium, respectively. Then, the total  pressure p(r,t), mass  density p(r,r), specific 
entropy  density q(r,r), and  absolute temperature @r,r) associated  with a propagating  acoustic disturbance 
are assumed to be 

O(r, t )  = eo (r, t> + So(r, t )  , (2.ld) 

where  the  pressure,  density,  entropy,  and  temperature  perturbations  satisfy 

Similarly, the total  particle  velocity  of the fluid medium is given  by 

However,  it is nor permissible to assume that fluctuations in the particle velocity  vector 6Vi are  small 
compared to the ambient medium  velocity vo. For  example, the ambient  medium may be at  rest  (i.e., 
vo(r,r) = 0). In like manner, the stress tensor components in the fluid are assumed to be an  additive 
superposition of ambient  stress  and  perturbation stress components: 

Since certain components of the  ambient stress tensor qy may vanish,  each stress perturbation &y need 
not  be  small  compared  with  the corresponding a;. 

The background  medium  is  subject to body forces P(r,t), energy (alternately, heat)  supply eO(r,t), and 
surface tractions sO(r,t), which  maintain the medium  in its reference  configuration.  Propagating acoustic 
disturbances are initiated by small fluctuations in the body forces, heat  supply,  and/or surface tractions. 
In this study, surface tractions are neglected. The total  body force density  (i.e., body force per unit 
volume)  applied to the medium is 



where & are perturbations that excite acoustic  waves.  Similarly, the total external energy  density  (i.e., 
energy per unit  volume)  imposed  on the medium is assumed to be 

where eo is the external  energy  density  supplied  to the ambient  medium.,  and & is a small fluctuation. 

3.0 CONTINUITY  EQUATION 

The local form of the principle of conservation  of  mass is expressed by the continuity equation: 

ap  ap avi -+v;-+p-=o, at ax;  ax; 
where  it is assumed that no mass  sources or mass  sinks exist. In this and subsequent expressions, 
repeated subscripts imply summation. Evaluating (3.1) for the ambient state of the medium  yields 

ap” oaPo avo 
at +vi  -+Po-=o ax; axi 

The first-order variation of (3.1) gives the  linearized  form 

a<sp> 0 a<sp> aPo a(&,) avo 
at + v i  - +---Sv,+p - + A s p  = 0. axi ax;  ax; axi (3.3) 

4.0 EQUATIONS OF MOTION 

Let qj (= 4;) be  the stress tensor components  and be the force density  vector  components. Then, 
Cauchy’s equations of  motion for a continuum, expressed in  indicia1  notation, are 

Equations (4.1) express conservation of linear and  angular  momentum for all  material  parts  of a 
continuum. Evaluating  these equations of motion for the reference state of the  medium gives 

Also, equations (4.1) are readily  linearized by calculating the first-order variation: 
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5.0 CONSTITUTIVE  EQUATIONS  AND  EQUATIONS OF STATE 

The constitutive relations  and  equations  of state characterizing a linear  viscous fluid are summarized in 
this section, without  mathematical  proof. The constitutive equations explicitly relate the stress tensor 
components qj, the specific  internal  entropy  production  rate c, and the entropy flux vector  components pi, 
to the velocity  vector  components vi and the absolute temperature 8. The material  parameters that arise in 
the expressions are all  functions of mass density p and  absolute  temperature 8. The specific  functional 
forms are referred to  as equations ofstate. 

5.1 Stress  Tensor 

For a linear viscous  fluid,  the  stress tensor components are given by 

where p is the thermodynamic  pressure and A, p are viscosity  coefficients.  Each is considered to be a 
function solely of the mass  density p and the absolute  temperature 8 : 

The specific functional  forms j5, x, and ji are referred  to  as  equations of state. The viscosity coefficients 
have physical dimension  pressure - time (SI units P-s). Thermodynamic constraints require 

2 
3 

p 20, A + - p 2 0 .  

Evaluating (5.1) for the  ambient  medium gives 

(5.3a,b) 

where 

P o  = ~ ~ 0 7 e 0 ) 7  A0 = X(p0, e o ) ,  p o  = p(p” e o ) .  

Linearized versions of the stress constitutive equations,  calculated  from the first-order 
are 

(5.5a,b,c) 

variation  of (5.1), 



Small fluctuations in the thermodynamic  pressure  and  viscosity coefficients are related to the  mass 
density  perturbation 6p and absolute temperature  perturbation 68 via  first-order  Taylor  series expansions: 

. I  

where the expansion coefficients are the partial derivatives: 

(5.8a,b) 

(5.9a,b) 

(5.10a,b) 

Note  that  these  expansion coefficients depend  only  on the ambient state of the fluid medium,  and are thus 
superscripted  with  the  symbol “0”. 

5.2 Entropy Production Rate 

The constitutive relation for the specific internal  entropy production rate 5 (physical  dimension: 
entropy/mass/time; SI unit: J/ “K/kg/s) is expressed as 

peg=a--++ avi avj 1 [ -+- avi avj][ - avj  avj] 30 38 
axi axj 2 axj axi axj ax; ax; axi +- +IC---, 

where  the  coefficient  Khas the equation of state 

K = r (p ,e) .  

(5.1 1) 

(5.12) 

That is, Kdepends  solely  on  mass  density  and  absolute  temperature. 

Evaluating (5.1 1) and (5.1 2) for the reference state of the medium gives 

0 0 0  p e g  =ao-- aeo aeo axi axj (5.13) 

and 



KO = r(po,eo). (5.14) 

Linearization  of  equation  (5.11) is postponed  until after it is substituted  into  the  entropy balance 
expression  (Section 6.0 below).  However, the linearized  form of equation  (5.12) is 

SK = d;Sp + diS6' , (5.15) 

where the coefficients are the first-order  partial derivatives 

(5.16a7b) 

5.3 Entropy Flux Vector 

The constitutive equations for the  components of the  entropy flux vector p i  (physical dimension: 
entropyhredtime; SI units: J /'K/m2/s) are 

ae 
axi p i  = - K - ,  (5.17) 

where K is given by equation  (5.12). This expression  indicates  that K is interpreted  as a thermal 
conduction  coefficient for entropy;  thermodynamic constraints require ~2 0. The ambient state version 
and the linearized version  of (5.17) are 

0 aeo 
axi p i  = - K  -, (5.18) 

and 

a(&?) aeo 
axi axi 

@i = - K  --- SK , (5.19) 

respectively. 

The entropy flux vector  components p i  and the heat flux vector  components qi are related  via qi = 8 p i .  
Thus, the product KO is interpreted  as a thermal conduction coefficient for energy. 

5.4 Entropy  Density 

In a linear viscous fluid, both the specific  entropy density 77 and  the  thermodynamic  pressure p may be 
derived from a (specific) Helmholtz free energy density function w :  

q=-- av 
ae (5.20a7b) 



where v i s  strictly a function  of p and 8 : v/  = v(p,B) . Then, equation  (5.20a)  implies  that an equation 
of state for the specific  entropy density has the general form 

That is, the specific entropy density is solely a function  of  mass  density  and absolute temperature. 
Ambient  and  linearized versions of this equation of state are 

770 = T(po,eo). (5.22) 

where the expansion coefficients depend on the ambient state of the viscous fluid via 

6.0 ENTROPY  BALANCE PRINCIPLE 

The local form of the entropy balance principle may be expressed as 

(5.23) 

(5.24a,b) 

where e is the external energy supply density  (physical dimension: energy  per  volume; SI unit:  J/m3). The 
entropy  balance principle expresses conservation of entropy for all  material  volumes of a continuum. 
Substituting the constitutive relations for entropy  production  and  entropy  flux pi  into the above 
expression  gives 

Recall  that the product KB is the heat  conduction  coefficient for the linear  viscous fluid. Evaluating  (6.2) 
for the reference state of the medium  yields: 
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The first-order variation of (6.2) gives the linearized  version: 

a(6e) aeo + - (KO68 + 
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7.0 SYSTEMS OF EQUATIONS 

The set of mathematical expressions collectively  representing  conservation of mass,  balance of 
momentum, balance of entropy, constitutive relations,  and equations of state may be assembled  together 
to provide a coupled  system of equations that  govern the dynamic  behavior of a linear viscous fluid. 
Systems describing both the ambient  and  perturbed  (i.e.,  wave  propagation) state of the medium are given 
below. 

7.1 Ambient  Medium  Equations 

For the  ambient state of the medium, the assembled  system of equations is 

- ap0 ap0 dvp 
at 

+ v i - + p  -- - 0 ,  axi axi (7.la) 

(7.lb) 

(7.1~) 

(7.ld) 

KO = r ( p 0 ,  eo), ? l o  =&",eo). (7.1  h,i) 

Clearly, the ambient  medium parameters cannot all be independently specified. Rather,  system  (7.1) 
constitutes a set  of  nonlinear constraints that these material  parameters  must  satisfy. 



7.2 Wave Propagation Equations 

Collecting the linearized versions  of the aforementioned  equations  together  yields  the  system: 

(7.2a) 

(7.2b) 

(7.2~) 

(7.2d) 

SK = diSp + d:&, 67 = g;sp + g p e .  (7.2h,i) 

Expressions  (7.2a  through i) constitute a set  of 16 coupled linear equations  containing the 16 dependent 
variables hi (i = 1,2,3), Sa, (ij = 1,2,3 with &, = 6qi), 6p, $, 62, 6u, 6~ 677, and 68. In principle, after 
boundary and initial conditions are  specified, the system  may  be  solved for these  unknown  acoustic 
wavefield variables, as functions of  position r and  time t .  

Clearly, the number of equations and  dependent  variables  may  be  reduced by combining various 
equations  within the system.  Perhaps  the  simplest  reduction entails eliminating  the four perturbations $, 
62, 6p, and &in favor of 6p and 68, by substituting  expressions  (7.2e  through h) into (7 .2~  and d). None 
of these four perturbations occurs in a differentiated form within  system  (7.2), so the resulting  system of 
12 equations with 12 unknowns is not  overly  complicated. In contrast, eliminating  the  entropy fluctuation 
677 by substituting (7.2i) into (7.2d)  entails differentiating the expansion  coefficients gp” and g i  with 
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respect to time t and  spatial coordinates xi. Similarly, combining the stress constitutive relations (7.2~) 
with the equations of motion  (7.2b) involves differentiating the  viscosity coefficients lo and ,d with 
respect to coordinates xi. 

8.0 NON-HEAT-CONDUCTING  IDEAL  FLUID 

An important  special case of the linear viscous fluid occurs when  the  viscosity coefficients and the 
entropy  conduction coefficient vanish.  For l = p = 0, the medium is referred to as an  ideal fluid, or a 
perfect fluid, or an  inviscid fluid. For K = 0, the medium is non-heat-conducting. Setting /z = p = K =  0 
in the constitutive relations  (5.1),  (5.1 l), and (5.17)  yield 

0.. = -p&. , 

peg = 0, (8.2) 

p i  =o .  (8.3) 

0 11 (8.1) 

Thus, in  an ideal fluid, the stress tensor is isotropic. Equation  (8.2)  implies 5 = 0, since both the mass 
density p and the absolute temperature 8 are intrinsically positive.  Thus, there is no internal  entropy 
production  (and  any  subsequent  entropy conduction) within  an  ideal fluid. 

The coupled systems of equations characterizing an  ideal  and  non-heat-conducting fluid are assembled in 
the following subsections. These systems are simplified by eliminating the stress tensor components ~j 

in favor of the pressure p ,  merely  by combining the equations of  motion  with the stress constitutive 
relations. 

8.1 Ambient  Medium  Equations 

Setting lo = ,L? = 61 = 6p = 0 as well  as $ = 6K= 0 in the previous  system  (7.1) gives 

ap0 ap0 oav;  
at axi axi -+vi - + p  -- - 0, 

+ v j  0 - avo] +-= aPo fi  0 7 

axj axi 

Po = p ( p o , o o ) ,  70  = q(po,eo). 

(8.4a) 

(8.4b) 

(8.4~) 

(8.4d,e) 

This is a set of seven  coupled equations linking the seven quantities YO (i = 1,2,3), p , p , qo, and 8' (i.e, 
particle velocity  vector components, mass density, pressure,  specific  entropy density, and absolute 
temperature of the ambient  medium, respectively). Clearly, system  (8.4) is nonlinear  with  respect to these 

0 0  

11 



variables. The nonhomogeneous  termsJ;'  (external force density  vector components) and &'/a (external 
energy density supply  rate) are considered  prescribed  functions of position r and time c. 

8.2 Wave  Propagation  Equations 

Similarly, setting A' = #=  SA = Sp = 0 as well as I? = SK= 0 in the previous  system  (7.2) gives 

WP) a(sp) avo ap0 
at axi  axi axi  axi +vi  - + - q p + p  - +---hi =o,  

L 

poco 

(8.5a) 

(8.5b) 

(8.5~) 

677 = g;sp + g;s0. (8.5e) 

This is a  set of seven, coupled, linear  equations containing the seven  dependent  variables 6 v ;  (i = 1,2,3), 
Sp, &, Sq, and 68. (i.e., fluctuations  in  particle  velocity  vector  components, mass density, pressure, 
specific entropy  density,  and  absolute  temperature,  respectively). The background  medium is 
characterized by fluid velocity  vector  components v o  (i=1,2,3),  mass  density po, specific entropy  density 
qo, and absolute temperature eo, as  well  as four coefficients up", a:, g, , go that arise from linearizing 
various equations of state.  Acoustic  waves  are  initiated  via the non-homogeneous  terms in the system. 
These are fluctuations in the force density  vector  components  (i=1,2,3)  and fluctuations in  the  rate of 
external energy  supply &&)/a. All quantities may be functions of both  position r and time c. 

0 0  

The number of equations and  dependent  variables  in  system (8.5) may  be  reduced  by combining various 
expressions. The most  straightforward  reduction entails eliminating the absolute temperature fluctuation 
68, since it does not  appear  in (8.5) in  differentiated  form (either with respect to time t or  spatial 
coordinates x;). Eliminating the absolute  temperature  perturbation 88 yields  a  system  of  six  coupled 
equations with  six  dependent  variables: 

acsp) w p )  avo ap0 
at ax, axi ax;  axi +vi - + - k p + p  - +---hi = o ,  (8.6a) 

(8.6b) 

(8.6~) 

12 



(8.6d) 

where  new coefficients are  defined as 

U 0  

ge 
ho 

0' (8.7a,b) 

(8.7c,d) 

Equation  (8.6d) indicates that the pressure  perturbation  is a linear combination of the mass  density  and 
specific  entropy  density perturbations. The coefficients in this superposition are readily interpreted. 
From equations (5.20a,b),  both the pressure  and the specific  entropy  density are considered to be 
functions of  mass density and absolute temperature, that is p = P(p,8) and 77 = T(p,B). Inverting the 

second of these expressions for absolute temperature gives 8 = 8 (p,q). Substituting this into the first 
expression indicates that the pressure may  be expressed as a difSer-ent function of  mass density and 
specific  entropy density: 

- 

Equation (8.8) may  be considered an alternative  equation of state for pressure. A first-order Taylor series 
expansion  of (8.8) gives 

p o + + = j j ( p o + 6 p , q o + 6 ~ ) = p o + ( c o ) Z 6 p + h o 6 ~ ,  (8.9) 

where 

(S.lOa,b,c) 

Thus, (c0)* is the  squared  adiabatic  sound  speed  (change in pressure  produced by a change in mass 
density, for fixed  specific  entropy density) evaluated for the background  medium. Coefficient ho 
quantifies the change in pressure produced by a change in specific  entropy  density  (for fixed mass 
density),  also  evaluated for the background  medium.  Coefficients r0 and so [in  equation  (8.6c)I do not 
appear  to  have  such  straightforward  interpretations. 

9.0 ADIABATIC  AMBIENT  MEDIUM 

In acoustic  wave  propagation  problems, the ambient state is commonly  assumed to be adiabatic. That is, 
the  material derivative of the specific entropy  density of the background  medium  vanishes: 

13 



avo  avo -+vp-=0. at axi 

If the ambient state is adiabatic, then  equation (8.4~) implies that the rate of external energy  supply  to the 
ambient  medium equals zero: 

deo 
at -=O.  

The adiabatic  assumption simplifies the linearized  acoustic  wave  propagation  system  (8.6)  slightly: 

&si9 0 a(@> avo 0 a<hi> ap0 
at +vi  - +--"ap+p - +--hi =o, axi  axi axi axi (9.3a) 

(9.3b) 

(9.3c) 

(9.3d) 

[Equations (9.3a,b,d)  are  identical to (8.6a,b,d)]. These are  still  six  coupled equations containing  six 
unknown  wavefield  variables.  However, the two  ambient  medium  parameters ro and so have  disappeared, 
leaving the acoustic  model  characterized by the eight quantities v o  (i=1,2,3), po, co, ho, qo, and 6 '. It 
should  be  noted  that  spatial  derivatives of mass  density  and  specific  entropy density are related  via the 
equation of state (8.10a): 

-+) aPo -+hO-, ap0  arlo 
axi  axi  axi 

Thus, one may  be eliminated in favor of the other in  system  (9.3),  although the pressure derivative &'/&i 

is then  introduced. 

Often, an additional  adiabatic  assumption is adopted: the material derivative of the total entropy  density 
associated  with the wave  propagation  process  vanishes. Thus 

-+vi-==. av  arl 
at axi 

14 

(9.4) 

Substituting q = qo + Sq and vi = v o  + hi , subtracting the ambient  medium adiabatic condition (9. I), and 
neglecting the second-order  term  gives the linearized form 



Comparing this expression  with equation (9.3~) above  indicates  that the total  adiabatic  assumption is 
equivalent to neglecting  energy density sources of acoustic  waves.  Blokhintzev  (1946)  obtains a related 
version of the set of four coupled equations (9.3a,b,d)  and ( 9 3 ,  assuming  additionally that &. = 0 (i.e., no 
acoustic force sources) as  well asf = 0, deo/& = 0 (Le., no force or energy  sources active in the ambient 
medium). 

9.1 Purely  Mechanical  System 

Adiabatic  assumption  (9.1) facilitates the derivation of a coupled  system of first-order  partial differential 
equations containing only the five "mechanical"  dependent  variables hi (i=1,2,3), i$, and 6p. The 
following, somewhat lengthy,  derivation develops this  particular  system.  Eliminating the fluctuation in 
specific entropy  density 677 between equations ( 9 . 3 ~  and  d)  yields 

[from the chain rule of partial  differentiation  applied to equation  of state (8.10a)l  gives 

a(+) 0 a<+> ; aPo &; -(.") 
[T 

+vi - ] .[a:, 0 w.p) aPo ] 
axi axi + v i  - ax; axi +-hi 

The terms  in  (9.8) involving material derivatives of the ambient  medium  parameters (c0)' and ho are now 

examined.  Applying the chain  rule  to the definition (co >' = aj(po,vo)/apo gives 

a(co)2 + vi o-=ko[F+vi a(co)2 aPo 0 a.,]+".[t+v; aPo avo 0377  4 .  

at axi (9.9a) 

Similarly, applying the chain  rule to the definition ho = aj(pO, qo)/aqo gives 
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(9.9b) 

Coefficients in the above two expressions  are  defined by second-order  partial derivatives of the equation 
of state p = ~ ( p ,  77) : 

Note  that a Maxwell  relation  (i.e.,  equality of  mixed  second-order  partial  derivatives) is used  in (9.10~). 
If the ambient state is adiabatic, then  expressions  (9.9a,b) reduce to 

a(.o ) * atCo ) 2  aPo 0 aPo + vi 
at O - - = k o [ x + v i  axi a,], 

and 

aho  aho ap0 ap0 - at + vi o - = z o [ x + v i  axi 4 
(9.1 la) 

(9.11b) 

Dependence  on  the coefficient mo disappears. Combining these  expressions  with the equation of 
continuity for the  ambient  medium  (equation  (8.4a)  above)  yields the forms 

a(co)2 a(co)2 +v i  -- - -k  0 p 0 3  
at axi ax; ' 

aho aho 0 0% - +vp-=-1 p 
at ax; ax; 

(9.12a) 

(9.12b) 

Thus,  the  material derivatives of the ambient  medium  parameters (c?' and ho are proportional  to  the 
divergence of the  fluid  velocity  field.  Expressions  (9.12a,b) are substituted  into  equation  (9.8) to obtain 

avp [ 10 [ ; ho a(&) 
ho 
-&+ k --(co)')6p] = -- 

poeo at 
(9.13) 
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Finally, the temporal  derivative of the mass  density  fluctuation is eliminated by using equation (9.3a) 
above,  yielding: 

ho a(&) 
(9.14a) 

This expression, together  with equations (9.3a  and  b),  constitute a coupled linear  system containing the 
five dependent  variables &i (i=1,2,3), $, and 6p. Equations (9.3a and b) are repeated  here: 

(9.14b) 

(9.14~) 

Although the variable 67 (perturbation  in specific entropy  density)  has  been eliminated, system  (9.14) 
still retains some  dependence on thermodynamic quantities (i.e., ho, P, and @) in equation  (9.14a). 
Further reductions occur for specific, simple motions of the background  medium. 

9.1.1 Stationary Background 

If the ambient  medium is not  moving,  then v o  = 0 and  system  (9.14) reduces to 

(9.15a) 

(9.15b) 

Equations  (9.15a,b)  are a system  of four, coupled, first-order  partial differential equations containing the 
four dependent  variables hi (i=1,2,3)  and $. After  solution, the mass density  perturbation 6 ,  may be 
found by integrating (9.1%)  in  time. Thus, the solution for the particle velocity  and pressure fluctuations 
decouples from the solution for the mass  density fluctuation. 

If the background  pressure  field is uniform  (i.e., d p o / d x i  = 0), then equations (9.15a,b)  are  identical to the 
velocity-pressure  system  commonly  used for seismic wave  propagation  modeling. The nonhomogeneous 

. 



. 

term in (9.15b) is interpreted as a moment  density  source  (physical  dimension:  moment per volume; SI 
units:  N-m/m3) differentiated with  respect  to  time. 

Interestingly, the twin  assumptions of  an adiabatic and stationary background  medium  imply  that the 
ambient state material  parameters  are  all  time-invariant.  Equations  (9.12a,b)  indicate that &Old = &’/& 
= 0, whereas  (8.4a) indicates dpo/d = 0. The adiabatic  assumption  (9.1)  reduces  to h0/& = 0. Applying 
the chain  rule  of  partial differentiation to the equations of state (8.4d,e)  indicate  that = dOo/d = 0. 
However,  all of these quantities may depend on the position  vector r, i.e., the background  medium  may  be 
heterogeneous. 

A single,  second-order  (in space and  time)  partial differential equation for acoustic  pressure is obtained by 
combining  expressions  (9.15a,b). Thus: 

An alternative way  of writing  the  combined  body source terms  on  the  right-hand-side is 

Thus, body  sources  of acoustic waves  involve (i) the divergence of the force density fluctuation, (ii) the 
inner product of the ambient  entropy  gradient  with the force density fluctuation, and (iii) the second time 
derivative of the energy  density  fluctuation. This illustrates the enhanced  complexity in source 
characterization  that  arises  when  first-order equations are combined [ e g ,  compare  with  system  (9.15a,b) 
where body source  terms are characterized by “lower-order”  differentiations,  and  no  pressure or entropy 
gradients  are  involved]. 

For uniform  pressure and mass density  in the ambient  medium,  equation  (9.16)  reduces to the well-known 
“variable  velocity  wave equation” traditionally  used in seismic  wave  propagation  modeling. Pierce 
(1990) states that the first published  derivation of the  homogeneous  version of (9.16), for uniform 
pressure  and non-uniform mass  density, is given  by  Bergmann  (1946). 



9.1.2  Steady  Uniform  Flow 

Another simple  reduction occurs when the background  velocity is independent of  both temporal  and 
spatial coordinates: vo(r,t) = vo. System  (9.14)  becomes 

(9.17a) 

(9.17b) 

(9.17~) 

Once again, solution for the particle  velocity and pressure  perturbations is uncoupled  from the mass 
density  perturbation. The four equations (9.17qb) are solved for hi and $, and  then 6p is  obtained  from 
(9.17~). Careful inspection  reveals  that  system  (9.17) may  be obtained from system  (9.15) by replacing 
all partial time  derivatives of dependent  variables  with  material time derivatives. 

For steady (time-invariant)  and  uniform  (space-invariant) flow, the material  derivatives of  all ambient 
medium  parameters  vanish. If the material derivative operator for the  background  medium is defined as 
dldt E dl& + vo dl&,, then  previous equations imply 

dco dho dPO - 0 ,  d v O  dPO - 0 ,  d e o  
dt  dt dt dt dt dt 
-- - 0 ,  - 0 ,  -- -- -- - 0 ,  -- -=o. 

Of course, dvfldt vanishes  (trivially). 

Combining (9.17a  and b) gives  a  single,  second-order  partial  differential equation for the  acoustic 
pressure perturbation $: 

This expression bears  a  remarkable  similarity  to  equation  (9.16)  above. Contrary to speculation by Pierce 
(1990), it is valid for spatially  variable  mass  density po and sound speed co. 

9.1.3  Steady,  Laterally  Invariant,  Horizontal Flow 

Suppose that the background  fluid  flow is strictly  horizontal  (i.e., v: = 0), as well as independent of time t 
and the two horizontal coordinates x1 and x2: 
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(9.19) 

Vertical  variation in the  two  horizontal  velocity  components is allowed.  Then, system (9.14) may be put 
into the form 

(9.20a) 

(9.20b) 

(9.20~) 

Once again, the particle  velocity hi and  pressure i$ perturbations  are  obtained by solving a coupled 
system of four, first-order,  partial differential equations (9.20a,b). The mass density perturbation Sp is 
obtained subsequently solving (9.20~). 

9.1.4 Divergence-Free Flow 

The previous three  background fluid velocity situations are all particular cases of divergence-free fluid 
flow. That is, &~/dXi = 0. For general divergence-free  flow,  with  no additional restrictions,  system 
(9.14) simplifies slightly: 

a<&> + v; a<&> ~ a(&;) aPo ho a(&) 
a t  axi axi  axi poeo at  

+--&; =--, 

(9.21a) 

(9.21b) 

(9.21~) 

Pressure and  particle  velocity fluctuations no  longer  decouple  from the mass  density fluctuation. System 
(9.21)  must  be  solved as a set of five coupled equations with five dependent variables. However,  the 
divergence-free flow  assumption eliminates two ambient  medium  parameters (ko and P)  from  the  system. 
If, additionally, there are no  energy sources (i.e., &&)/a = 0), then all thermodynamic  parameters  (i.e., 
including ho and 8 4 disappear. The ambient  medium is characterized by particle velocity  vector 
components v: (i=1,2,3),  mass  density po, and  adiabatic  sound  speed co . [The pressure gradient &'/axi in 
equation (9.21b) may  be exchanged for force density f and  other  ambient  medium parameters by using 
expression (8.4b).] 

The divergence-free flow  assumption,  together  with  adiabaticity,  imply that material derivatives of  all 
scalar-valued  ambient  medium  parameters  vanish: 
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dco  dho dPO - 0 ,  dV0 dPO deo 
dt  dt dt dt  dt  dt 
-- - 0 ,  - 0 ,  -- -- -- - 0 ,  -=O, -=O. 

However, the three material  derivatives  of the background particle velocity  vector  components are not 
necessarily  zero: 

dvp 
- # O .  
dt 

I f  this material derivative vanishes, then equations (9.21a,b)  in the above  system  decouple from (9.21c), 
and the pressure  and particle velocity  perturbations are obtained by solving four coupled  partial 
differential  equations. 

10.0 THREE  DIVERGENCE-FREE  SYSTEMS 

The “purely  mechanical system” of five, coupled, first-order, partial  differential equations (9.14) is 
obtained by eliminating the perturbation in specific entropy density Sq from the more  general system 
(9.3).  Obviously, alternative systems may be obtained  by eliminating the  mass  density fluctuation 8p or 
the pressure fluctuation &. Each  such  system also consists of five,  coupled,  first-order, partial 
differential  equations.  In this section,  all three systems are summarized  and  compared,  with the goal of 
infemng an  advantageous  system for subsequent  numerical  solution. 

In addition  to  an  adiabatic  ambient  medium [as is assumed in the derivation  of  the  parent  system  (9.3)], 
the present derivations assume that  the particle velocity of the background  medium is divergence-free: 
A?/& = 0. This is, admittedly, a restricting assumption.  However, it is  considered a realistic condition 
characterizing fluid motion  in the atmosphere or the ocean. Equation  (8.4a)  then  implies that the material 
derivative of the ambient mass  density  vanishes; that is, the ambient fluid motion is incompressible. 

The particular  “purely  mechanical  system”  (9.21), appropriate 
background  medium, is repeated here in slightly  modified form: 

a(&,) a t h i )  avp 
+ V i  at 

+-hi +-- ax;  ax; - 

for  an adiabatic  and divergence-free 

1 

P 
sp = y&, (1O.la) 

(1O.lb) 

(1O.lc) 

There are five dependent variables (hi , &, Sp) and  six  medium  parameters (v?, po, co, PO). The reason 
for not counting the two thermodynamic quantities ho and @ in (10.lb) as “medium parameters” is 
explained  below. 

c 
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Alternately, the mass  density  fluctuation Sp may  be eliminated from  system  (9.3),  giving 

10.2b) 

10.2c) 

There are five dependent  variables (hi, @, 87) and eight medium  parameters (v?, po, co, ho, $, 7') [with 
8' not counted].  However,  the  spatial derivative of the ambient  specific  entropy  density *'/ai may  be 
exchanged for similar  derivatives of background  mass  density  and  pressure by using the equation  of state 
in the differentiated  form  (9.7).  Hence,  the  number  of  ambient  medium  parameters is reduced to seven. 

Finally, eliminating the pressure  fluctuation @ from  system  (9.3)  gives 

ho d(6v) 1 aho 1 
+ p ~ a ~ , + p ~  axi (10.3a) 

-& =? 

a(&> 0 a<@> a(&;) dPO 
at 

+ v i  - +-&; =o,  axi axi  axi (1  0.3b) 

(10.3~) 

There are five dependent variables (hi , Jp, 87) and  seven  medium  parameters (vi , p , c , h , 7') [with 6' 
not  counted].  Once  again, the gradient of the ambient  specific  entropy  density may be exchanged for a 
linear combination of gradients of ambient  mass  density  and  pressure. 

0 0 0 0  

A straightforward  visual  inspection of the above three sets of equations  suggests  that  system  (10.1) is 
most favorable for numerical  solution  purposes. The four principal  reasons for this conclusion  are: 

1) The coefficients in (10.1) are somewhat simpler than  in  the  alternative  systems.  For example, equation 
(10.3a)  possesses  gradients of the material  parameters (c?' and ho, in addition to gradients  of po and v?. 
The gradient of ambient  specific  entropy  density appears in (10.2~) and (10.3~). Although a'/&, may  be 
expressed in terms of &'/&; and dp0/&; , the resulting coefficients  are  more complicated, and the 
"difficult to determine"  parameter  ho is introduced [see point  3)  below]. 

2) System (10.2) contains three  non-homogeneous terms representing  body sources of acoustic waves. 
The other systems  have  only  two  such  terms. 
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3) The thermodynamic  parameter ho (quantifying the change  in  acoustic pressure induced by change in 
specific  entropy density) is probably the most  difficult  ambient  medium  parameter to determine in 
practice.  System (10.1) contains ho only in direct association  with a non-homogeneous  term,  and  not  as a 
coefficient of a major  term  on the left-hand-side of the equations. If the  acoustic  energy source $&)/a is 
restricted to be a point source  (i.e.,  isolated  at a single  location in space),  then  parameters ho and @ in 
(10.lb) may be incorporated  into the source  magnitude factor. They  need not be known  throughout  the 
three-dimensional  region of space  where the system of partial differential equations is numerically  solved. 
This is the reason  that  ho  and B o  are not  considered  medium  parameters  in  system  (10.1). In contrast,  ho 
appears  on the left-hand-side  of systems (10.2)  and  (10.3).  Hence, it must  be  known (and stored  in a 
numerical  algorithm)  throughout the three-dimensional  domain  where the equations are solved.  The same 
argument applies to the absolute temperature 8 in all three systems: for a point  source (or set of point 
sources), it may be incorporated directly into the energy source magnitude factor(s). 

4) System  (10.1) contains fewer ambient  medium  parameters  than  the two alternatives. Thus, a numerical 
algorithm for solving the system requires less  computational storage space. 

Finally,  note that numerical  solution of systems (10.1) and (10.2) directly  yields the acoustic  pressure 
fluctuation, whereas i$ must be calculated  after  solution of  (10.3)  for Sp and Sq , using the linearized 
equation  of state (9.3d). In atmospheric  and  oceanic  sound  propagation  problems, the pressure  fluctuation 
is probably the most  useful  acoustic  wavefield  variable. 

11.0 CONCLUSION 

The mathematical equations developed  herein constitute the foundation  of a numerical  algorithm for 
simulating acoustic wave  propagation  through a variety  of  realistic  atmospheric,  oceanic, and/or 
laboratory environments. The expressions are  rigorously  derived from fundamental  principles of 
continuum  mechanics,  pertinent constitutive relations,  and  equations of state.  Wave  propagation 
equations are obtained by linearizing the relevant expressions with respect to all  acoustic  wavefield 
variables. No mathematical  approximations  beyond first-order linearization  are  utilized;  hence, the 
expressions are considered  “exact”  within  this  context. The utility of the equations is enhanced by their 
generality. Thus, the equations govern  three-dimensional  acoustic  wave  propagation  within  media  that 
may  be  spatially  heterogeneous,  time-varying, and/or moving  (in any or all of three  spatial  dimensions). 
In contrast to numerous alternative developments, no limitations are  imposed  on  the  temporal  or  spatial 
scales of ambient  medium  variability.  Finally,  acoustic  waves are activated by two distinct  body  source 
types: fluctuations in  applied force density  and  applied  energy  density. As previously  indicated in section 
2.0, time-varying  boundary conditions are neglected in this study. 

A reduced  set of linearized  wave  propagation equations is obtained if the ambient  medium is assumed to 
be (i) an ideal  (i.e.,  non-viscous and non-heat-conducting) fluid, (ii)  adiabatic  (i.e., contains no energy 
sources)  and (iii) executing  divergence-free  (i.e.,  incompressible)  motion.  These are reasonable 
assumptions for many  atmospheric  acoustic  wave  propagation  scenarios. This reduced  system  (called the 
“purely  mechanical  system”  herein) consists of five, coupled, first-order,  partial differential equations 
containing the dependent variables hi, &, and Sp (fluctuations in particle velocity  vector  components, 
pressure,  and mass density). Coefficients in  the  system  depend  on  six ambient medium  parameters vi , p , 
co, and po (i.e., three fluid velocity  vector  components,  mass  density, adiabatic sound  speed,  and  pressure, 
respectively).  It is emphasized  that these parameters cannot be chosen  arbitrarily,  but  must  satisfy a 
different nonlinear system of equations governing the dynamic  behavior of the background  medium. 

0 0  
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The preferred  system  of  equations  appears  to  be  amenable to numerical  solution  using an explicit, time- 
domain, finite-difference  methodology.  Provided  spatial  and  temporal gridding intervals are  chosen 
appropriately, the finite-difference  approach  will simulate all  acoustic arrival types (direct waves, 
reflections, refractions,  diffractions,  etc.)  with  fidelity,  because no additional  mathematical or physical 
approximations (like paraxial  propagation,  high  frequencies,  weak  scattering,  stratified ambient motion, 
etc.) are adopted. 

Finally, two particular  aspects of this work, involving acoustic  energy sources, require additional 
clarifying research: 

1) Mass source: Conventional  treatments of classical (i.e.,  non-relativistic)  continuum  mechanics  (e.g., 
Malvern,  1969;  Narasimhan,  1993) do not  admit the existence of  mass sources or mass sinks. However, 
certain texts  on  acoustic  wave  propagation  (e.g., Morse and  Ingard,  1968, p. 322; Ostashev, 1997, p. 27; 
Kinsler, et al., 2000, p.  141) introduce a mass source as a non-homogeneous  term  in the continuity 
equation [expression  (3.1)  above]. These two points of  view  require  reconciliation. Presently, mass 
sources are inserted in  an ad hoc sense,  with no evaluation of their  impact in Cauchy's equations of 
motion  and/or the entropy balance principle.  Nevertheless,  they may  be  useful  mathematical 
representations of certain  types of acoustic  energy sources. 

2) Body force  representation: In the current  work,  body force density Cf;' in the ambient medium 
equations and  in the wave  propagation equations) is specified  as force per  unit  volume (SI units: 
N/m3). This choice is motivated by prior  experience in seismic  wave  propagation  studies.  Alternatively, 
body force density may  be specified  as force per  unit  mass  (SI  units: Nkg). The mathematical 
relationship between  the  two  representations is 

where p is mass  density  and gi  are the specific  body force density  vector  components. Hence, background 
medium and linearized  versions  are 

fi" = pog,O, and 

respectively. Curiously,  use of the specific  body force components go and i f g i  complicates many  of the 
previous mathematical  expressions  governing  acoustic  wave  propagation.  For  example, equation (9.15a) 
above (appropriate for an adiabatic and stationary ambient medium)  becomes 

[as in  Bergmann (1946)l. The  presence of the dependent  variable Sp (mass  density fluctuation) in this 
expression implies  that  system  (9.15a,b,c) does not  decouple  into a set of four partial differential 
equations for the pressure  and  particle  velocity  variables!  Rather,  system  (9.15)  must be solved as a set  of 
jive coupled  equations.  Clearly, a numerical  solution  algorithm is more  complicated. A related example 
involves the single  partial differential equation  (9.16) for acoustic  pressure. This expression is 
significantly simpler  than the analogous  equation  given by Bergmann  (1946),  where the derivation 
employs the specific  body force density  representation. 

It is emphasized  that  all of the expressions developed in the current  study,  which  utilize the volumetric 
body force density  formalism,  are  rigorously correct in a mathematical  sense.  However, it is presently 
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unclear  whether the appropriate physical representation of  an acoustic  wave source entails specification of 
a volumetric or a specific  body force density. 
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